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I. INTRODUCTION

Although the study of wave scattering by randomly rough surfaces started

several decades ago, it is still a challenging research topic today [1-11].

Basically, when the surface is slightly rough and its surface slope is generally

smaller than L-Aity, the perturbation technique can be used. When the radius of

curvature of the surface is much greater than the wavelength, the Kirchhoff

approximation can be applied [12]. In other words, for relatively long wavelength

waves, the perturbation technique is a good choice; for relative short wavelength

waves, the Kirchhoff approximation can be adopted. In any situation, second

moments of the scattered wave field can provide some useful information such as

average intensity. More fruitful information on scattering characteristics relies

upon the knowledge of fourth moments of the scattered wave field. However, more

difficulties will be encountered in deriving the fourth moments. Wave scattering

by randomly rough surfaces is not only an interesting topic for theoretical study

but also a practical problem in many applications ranging from microwave

scattering by ground surfaces in remote sensing, acoustic scattering by the ocean

surface and floor in underwater acoustics, to optical scattering by a rough metal,

dielectrics, or semiconductor surfaces in designing optics and electronics

devices.

In this paper, three types of fourth moments are evaluated for acoustic waves

forward scattered by a rough ocean surface. The first one is the scintillation

index a defined by

= [<jp4>l<jpj2> -1]/(1)
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Here p is the scattered acoustic wave field and < > stands for an ensemble

average. The scintillation index describes the intensity fluctuation of the

scattered wave. The purpose of evaluating the other two fourth moments is to

extract some information on the phase fluctuation of the scattered wave. To see

this point, let us first consider the case of weak scattering in which the

fluctuations of the log-amp] 4 tude and phase of the scattered wave field are either

weak or jointly Gaussian distributed. Hence, by writing the scattered wave p as

p = exp (X + iS)

in terms of the log-amplitude x and phase S, the two-position coherence function

<(plp2*) 2> is given by

< (pp2")2 > = exp (2< (X1 + X2)2>]exp [-2< ($I-$2)2>] (3)
x exp [4i<(xI+x 2) (S 1 -S 2 )>1 I

where the subscripts 1 and 2 stand for the waves at positions 1 and 2,

respectively. Meanwhile, the two-position intensity correlation function <I1 12>

is given by

(1112> = <IpIP2 I> (4)

= exp [2< (X1 +X2 ) 2 >]

where the intensity I - IpI 2 . Therefore,

(1112 = exp [-2 < (S1 -S 2 ) 2 > (5)< 11 I2 >

which describes the fluctuation of the relative phase between the two observation

positions. When scattering becomes stronger, the simple result in Eq. (5) is not
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valid. However, the ratio t<(plp2">I/<I/I2> or the difference between I<(p:p2*) 2 1

and <1112> still carries information on the relative phase fluctuations. To

extract this information, the normalized two-position coherence function

<(plp2') 2/<I1><I2> and normalized two-position intensity correlation function

<IjIa>/<Ij> <12> are to be evaluated in this paper.

Because the acoustic frequency of concern is relatively high, the Kirchhoff

approximation will be used. Two types of spectral functions for the surface-

height fluctuation are considered: a Gaussian spectrum and the Donelan/Pierson

(D/P) spectrum. The latter is obtained from a model describing the fluctuations

of the ocean surface height which are controlled by the wind speed on the ocean

surface [13]. Both the scale-size and mean-square fluctuation of the ocean

surface height are determined by the wind speed. The fluctuation of surface

height ý is assumed to be statistically Gaussian distribu !d. Numerical

techniques will be designed to evaluate the multi-fold integrations of the fourth

moments. For mathematical simplicity, only two-dimensional propagation and

scattering are considered. The rest of this paper is organized as follows. The

geometry of problem is discussed in section II. Also, the average intensity of

the scattered wave field is evaluated. The derivations and numerical results for

the scintillation index are given in section III. Sections IV and V are devoted

to evaluation of the two-position coherence function and two-position correlation

function, respectively. Conclusions are drawn in section VI.

II. GEOMETRY OF PROBLEM

The basic geometry of two-dimensional scattering by a randomly scattered

rough ocean surface is shown in Figure la. The depth and smooth ocean surface are

defined to be along the z and x axes, respectively. A line source and a line



!
5 9 August 1990

b CCY:STM:lzh

5 receiver are located at certain depths so that the incident range Ri, scattering

range R,, incident angle 8j, and scattering angle 0., are as shown in the figure.

5 The surface height fluctuation from the mean at z - 0 is described by the random

field ý(x) with <ý(x)> - 0. By ignoring some unimportant factors, the wave field

3 at the receiver in the Kirchhoff approximation can be expressed by [14]

p fdK exp [-i(x2/xf2 + 2ax + 2yC(x))] (6)

I
where

2h2 sin2O 1 + sin 2 () (7)

a -- (cosOt - cosO5 ) (8)
2

and

y- (sin81 + sinO,) (9)
2i

Here k is the wave number which is assumed to be a constant in the ocean. In

other words, the ocean in assumed to be a homogeneous medium to the sound wave.

In Eq. (6), since ý(x) is a random field, the wave field p is stochastic. Note

that the coordinate center can be properly chosen so that 01 - 8, - Y and, hence,

3 0 -0.

The average intensity of the scattered wave field can be easily computed to

I give

<I> = <lpl2> : (10)

I
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Hence, the average intensity has nothing to do with random fluctuations of surface

height.

Figure lb shows the geometry for the evaluation of the two-position intensity

correlation function. Two line receivers are placed at different depths but the

same horizontal positions. The depth difference or separation is d. The ranges

R, and R2 and the corresponding scattering angles 01 and 02 are defined in the

figure. The range R, and the corresponding angle 9 are used to define the

midpoint between the two receivers. Hence, R1 , R2 , 81, and 82 can be expressed in

terms of Rg, 9, and d as

e1 = e - sin-r (d cose/2R1 ) (11)

02 = 0 + sin-' (d cosO/2R2 ) (12)

and

R1,2 = (R2 + (d/2) 2 ; d R sin0]1 1/ 2  (13)

These equations will be used in the following sections.

III. SCINTILLATION INDEX

Since the scintillation index is related to a limiting value of the two-

position intensity correlation function <1112>, the derivation in this section

starts with <112>. Only the detailed results of the scintillation index are

presented in this section. Those of the two-position intensity correlation

function will be given in t, e next section.

The derivation starts with
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< 112?. - < lpI lIp2 12> ..

=ff ff dx ,d•dx.dx exp(-i ((,2e- X2) /IX 2 x - x2) Ix ()L rl+ (3 f (14)

+ 2a (x - x2) + 2a2 (x3 - x)]}

x <exp(-i[2y,(C(x 1 ) - C(x 2 )) + 2y 2 (C(x 3 ) - C(x4 )]}>

The ensemble average can be reduced to

exp (-4<( 2 >H)

= exp (-4<Q> (y2 + 2- _2C(XI - x2) - 2 CC(x3 - x,) (15)

+Y1Y2 (CC'xl - x 3 ) - CC(x 2 - X3) - C(x 1 - x4) +C(x 2 - x4 )

Here, <ý?> is the mean square fluctuation of the surface height and C,(x) is the

normalized correlation function of the surface height fluctuation. In Eqs. (14)

and (15), xfl, xf2, -yl, and 72 are defined in Eqs. (7) and (9) for the two

receiving points, respectively. By considering the following variable

transformation with unit Jacobian:

X 1 1 1t

X2  1 -1 1 -1 P/2 (16)

X3  1 -1 -1 1 S/2

x,4 1 1 -1 -1 q/4

the integrations with respect to t and q can be easily completed. The result is

4 it'AlA2 f dwd3exp(-i[2P9/(Al +A 2 ) +7B']
<Il11> 2 +A. _= (17)

x exp [-4<C2>H(3,-)
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with

H(j~ CC + -yC(2TPV11) y2C- 2V( - '1))

+ yY 2 [c ((CC + 3)e) - Cc(T(R(2q - 1) -) - CC- 1) + 3Q) (18)

+ CC ( (3 - 5) 0)]

in terms of

A2 =Xi 2 /2•2 (19)Al, 2 =f x, 2/ 2

B'= 40 ((X•12 ax 2 ) (Xf1 + X)2 (20)

S= x2/ (x2 + x%2) (21)

the -5 = P/1, 3 = S/1. The notation I represents the characteristic length of

surface height fluctuation or more precisely is the scale size of the correlation

function CS(x). If we define

A = X2 /2f2 (22)

and xf and -y as in Eqs. (7) and (9) for the midpoint between the two receivers,

<IIz> in Eqs. (1.7) and (18) can be further reduced to

< 4 n4AA1 A2 f dP' dS'exp[-i(DP'S' + BPI)] (23)
<A + A _

x exp wi-thH' (SI, PI)

with
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H'(S',P') .- + :F'- 7C(2P'q) -2C(2P'(1 -q)

+ *Y1Y2 [C(P'+S') - C(P'(2 -1) - S') (24)

-C(P (2- 1) + S') + C(S' - P')

Here,

D = 2A/ (A +*A2 ) (25)

B = VA B' (26)

=1.2 Y1,2/y (27)

2= 4<C2>y2 (28)

and

C(x) CC(XXe/4) (29)

Also, the new integration variables are P' 1 = (A) 1 /2 and S' = •/(A) 2 . From Eq.

(28), 0 is an indicator of scattering strength.

Equations (23) and (24) will be used for evaluating the two-position

intensity correlation function. The rest of this section is devoted to the

computations of the scintillation index. When positions 1 and 2 coincide,

B - 0, q - 1/2, and D - 1, as can be seen in Eqs. (20), (21), and (25),

respectively. In this situation, Eqs. (23) and (24) become

<12> = 27ctA2ff dP' dS'exp(-iPPS') exp [-0 2 H'(SI,,P1) (30)

with

H' (S', P') = 2 -2C(P') -2C(S') + C(P' + S') + C(P'- S') (31)
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The fact that the normalized correlation function Cf(x) or C(x) is an even

function has been used. It is noted that the integration in Eq. (30) must result

in a real number for <12> although the integrand is complex. Hence, this

integration possesses inversion symmetry with respect to both P' and S'.

Therefore, Eq. (30) can be rewritten as

<I,> /< 2 Re f dP' dS' exp (-i P'S') exp [- 2 HI' (S', P)] (32)

0'I
where <I> given in Eq. (10) is used and Re stands for "the real part of."

To numerically evaluate the integration in Eq. (32), the integration area is

divided into three regions (I, I!, III) as shown in Figure 2. The dimensions

defining the three parts L, L1, L2 and L3, follow the relations

L2 = L 1 + V'fL (33)

I| and

L 3 = V1 L, + L (34)

The sizes of L and L, will be defined later. In these three integration regions,

different approximations will be used for numerical computations. If the phy.ical

size of L is much larger than the scale size of the correlation of ', i.e.,

C(L) <<«, the integration for <12>/<I>2 over region I becomes

(<I,>/<I>,), I Re dP'dS'exp (-iPIS') exp [-012H/(S',PP)] (35)

with

H'(S,,P') a 2 + C(P'-S') . (36)
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If the variable transformations x - (S' + P')/2 and y - P' S' are used, it is

easy to obtain

PIS, = x,- y 2 /4. (37)

With t'ie phase factor y 2/4 in the integrand of Eq. (35), the contribution to the

integration is negligible for large y. Hence, if L, is chosen so that L, 2/4>>2f,

Eq. (35) can be approximated by

(<I2>/<I>2)z = -!Re f dyexp-i(X2 - y2 /4)]1C (38)

x exp [.-2 (2 + C(y))]

Next, if 0 is not extremely large, we expect that I - exp [-4V2 C(y)] decreases

very fast with y. Therefore,

1<2>/<1>2)r =- -2ReE2 (2Ej- dy[l-exp(-0 2 C(y))]}7 (39)

x exp (-20 2)

where

+ (40)

and ý2 is a Fresnel integral as

= f dxexp (-ix 2 ). (41)

The integrations in Eqs. (39) and (41) can be easily completed for
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< <Il>/<I>2) •.

For region II, we have

- L

4 Re dP' dS'exp (-iS'P') exp [-0 2H' (S', P')] , (42)

Here, a factor of 2 has been included since region III covers two separate parts

which result in the same integration value. Because the physical size of L is

much larger than the scale size of C(x), the upper integration limit L for S' in

Eq. (42) can be replaced by - without significantly changing the integration

resu].t. Also, H'(S',P') can be approximated by

H' (S', P') = 2 - 2C(S') (43)

Hence, Eq. (42) becomes

<= 2 Re f dP'/ dS'exp×(-!SIP') exp[-24 2 (1 -C(S'))]. (44)( <I> /<I>2 zz • • --

It is evident that the integration with respect to S' is a Fourier transfoiT and

can be easily evaluated using the Fast Fourier Transform algorithm on a computer.

For region III, no approximation can be made. Double integrations on a

computer must be performed. The contribution from region III is

L L.-1,-P, L L.-r,-P1
(<12>/<1>2) tr- = -!Re C'dP'f dS'o

rr C Ref d' f fS-f (45)
a 0 0 L

x exp (-iSIP') exp [ -02H/ (SI, Pl)]

with H'(S',P') given in Eq. (31).

Hence, <12>/<I>2 is the summation of the results in Eqs. (39), (44), and
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(45). For numerical computations, the correlation function of surface height

fluctuation ý must be chosen. To illustrate the dependence of the scintillation

index on the parameters * and A, a Gaussian correlation function, corresponding to

a Gaussian spectrum, is used

Cc(x) = exp C (x/- ) 2 ] (46)

and, hence

C(x') = exp [- (x&v/K) 2 ]. (47)

In numerical computations, L = 5/' and L, = (80n) " are used. The numerical

accuracy was checked by decreasing the step sizes in the integrations until the

results were not changed. Three curves are plotted in Figure 3 for the

scintillation index a versus * for three different A values of 2.58 (long-dashed),

50 (short-dashed), and 245 (solid) when the Gaussian correlation given in

Eqs. (46) and (47) is used. Each curve increases with 0 and approaches unity

asymptotically. In other words, the scintillation index increases with scattering

strength and becomes close to one when saturation is almost'reached. The wave

field follows a jointly Gaussian distribution in the saturation regime. The fact

that the scintillation index does not exceed unity implies that the phenomenon of

focusing-defocusing does not occur. Among these three curves, the higher the

value of A, the larger is the scintillation index. To further explore this

trend, from Eqs. (7) and (22) under the assumptions 81 - 6, - 8 and R, - R, - R, we

can obtain

A = R/(2kQ2 sin2 O) .
(48)
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It is easy to understand that a smaller I value (larger A) leads to stronger

scattering and, hence, a larger scintillation index. Also, as the range R is

increased more complete evolution from phase fluctuations, which are due to rough

surface scattering, into amplitude fluctuations is expected. Therefore, a larger

R value (larger A) results in a larger scintillation index. It is noted that for

4ý<2, the approximations used fail. The numerical methods used will also fail for

very strong scatter.

IV. TWO-POSITION CORRELATION FUNCTION

The computations for the two-position correlation function start from

Eqs. (23) and (24). By using Eq. (10),

<I I2>/<I1><12> = (2A Ref dP'f dS'exp[-i(DP'S'+BP')]
n (A +A) (49)

x exp [-02HI (SI, pl)]

where H'(S',P') is given in Eq. (24). In obtaining Eq. (49), the symmetry with

respect to P' was used. Because this integration does not possess symmetry with

respect to S', the partition of the integration area is different from that for

computing the scintillation index. For the integrations in Eq. (49), four regions

(I through IV) are designated as shown in Figure 4. Among them, regions I and ii

individually have two separate sections. For simplicity in notation, we define

E = 2Ref dP'f dS'exp [-i (DP'S' + BP')] (50)
x -- (50P

x exp [-0 2H'($', P') ]
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and, hence

<•2 <"1 - ( 5 1 ) .. . .: ... -----

S(Al + A2) "(1

The dimensions L, Lj, L2 , and L3 in Figure 4 are the same as those in Figure 2.

The approximation used for region 1 is the same as that for region I in

Figure 2. It results in

E, = 2Re (F'G) (52)

where

F= (7D) 1/2exp (-iB2 /4D){[1 -C1 (u) -C1 (v)] -i[1 -S 1 (u) -S 1 (v)]) (53)
2D

and

G~ ~ ~ ~ ~~2 = x 0 '2+y) _T /2 (1 +i) exp (iB2/4D)
p [D

(54)

-2fdy [I - exp (-4• 2  C(y) ) ]}.
0

The approximation for region II here is again the same as that for region II in

Figure 2. The contribution from this region is

aW 2

Elr - -- Re dS' dP'exp(-iPISI)
DLI -W

(55)x (cos WB') [exp (-02 [2 +7 -¥2-¥c(2PT) -Y'2c(2P (1 -Y) (55

-ex-p ( 1a + 72) .

Again, the algorithm of the Fast Fourier Transform can be used for the integration

with respect to P'. No approximation can be made for region I11; its contribution
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is

E.. ' 4Re[ f dP' f dS' + f dP' f dS'] exp (-iDP'S') (56)
L 0 0 0

x Cos (PIB) exp [ -02 H (S", pI)]

Here, H'(S',P') was defined by Eq. (24). Finally, for region IV the two-fold

integration cannot be simplified. However, H'(S',P') can be reduced to produce

Elv= 2Re dP1 fL.- W-,) 2n - ) dS'exp (-iDP'S'- iP'B)
S-L -(P'-L,)(2q-1) (57)

x exp{-02 [72 + 72 - Y172 (C(P/(211 - 1) -S•) + C(P(2tj - 1) + S1))]

This two-fold integration is quite time consuming on a computer, especially when q

approaches 1/2. It is noted that Exv is equal to El, when q - 1/2. This equality

can be used to check the accuracy of EIy. Combining Eqs. (52), (55), (56), and

(57), we can obtain E as

E - El + Ell + EBr1  + EBv (58)

and thence <I1I2>/<I>'ýxI2> from Eq. (51).

To describe realistic ocean surface fluctuations, the D/P spectrum [13] is

used at low wave numbers and the empirical spectral model of Pierson and Stacy

[15] and Pierson [16] at high wave numbers. This combined spectrum has an

approximate dependence on the inverse cube of the wave number over a wave number

span that is determined by wind speed and vanishes outside this region. In this

spectrum, both scale size I and mean-square fluctuation <ý2> are controlled by the

wind speed at the ocean surface. Two normalized D/P correlation functions are

depicted in Figure 5 for wind speeds of 10 m/s (solid curve) and 15 m/s (dashed
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curve). Side lobes f: both curves can be seen. The scale size I is defined as

the length at which the correlation drops to one-half of the maximum value.

Therefore, we have I - 9.27 m and 22.61 m for wind speeds of 10 m/s and 15 m/s,

respectively. Also, the mean-square fluctuations are < -2> _ 1.08 m2 and 5.38 M2 ,

respectively, for the lower and higher wind speeds.

In numerical computations, we again choose L = 5/ A and L, = (80n) 12

Other parameters are e - 10' and k - 4x (frequency - 3 kHz). Two values for

Ri - R, - R at 1 km at 10 km will be used. Figure 6 shows the resuits for the

normalized two-position intensity correlation function <IiIz>/<IiI2> as a

function of the separation d between the two receivers for variois situations.

The four solid curves labelled by A, B, C, and D show the results for the ')/P

correlations with: (A) R - 1 km and wind speed - 10 m/s,

(B) R - 1 km and wind speed - 15 m/s,

S(C) R - 10 km and wind speed - 10 m/s,

and (D) R - 10 km and wind speed - 15 m/s.

For comparison, two dashed curves are plotted for the Gaussian correlation with

(A') R - 1 km and (C') R - 10 km. The scale size of the Gaussian correlation is

set at 9.27 m and mean-square fluctuation <.2> is 1.08 M2 which correspond to the

wind speed at 10 m/s in the D/P correlation. The comparison between curves A and

B shows that for weak scattering the two-position intensity correlation is higher

for a higher wind speed. When the range R increases, phase fluctuations of the

scattered wave can evolve into amplitude fluctuations more completely and, hence,

the curves for the intensity correlation become higher. In the case of R - 10 km,

although the scintillation index at a wind speed of 15 m/s is higher than that at

10 m/s, the intensity correlation decreases faster with separation between the two

I
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receivers. The comparison between curves A and A' and that between curves C and

C' show that if all other parameters are the same, the Gaussian spectrum leads to

weaker scattering. Because forward scat'er in the Kirchhoff approximation is

governed by local specular reflection from properly oriented "fac.ets" on the

surface, the mean-square surface slope determines the area of the surface that

contributes effectively to scattering. The quasi power law dependence of the D/P

spectrum yields higher mean-square surface slopes, and, hence, stronger scattering

than does the Gaussian spectrum. It is noted that curves A, B, C, and C' are

almost parallel, indicating that the correlation lengths in these cases are about

the same. Since curve D is steeper than curve C, the correlation length is

shorter and scattering is stronger in the case of D. For the same reason, the

scattering in the case of A' is very weak.

V. TWO-POSITION COHERENCE FUNCTION

As discussed earlier in this paper, the two-position coherence function

carries information on phase fluctuations. The derivations start with

~ 2 =ff ff d~id2dK3dK exp{-i Xi( + 4i) 14.1

(59)
-X( + Xi)/xi2 + 2a, (x1 + x3 ) - 22 (x 2 + x 4 )]

x <exp{-i[2y 1 (C(x1 ) +C(x 3)) -2Y 2 (((x 2 ) + (X4))>

After using the variable transformation in Eq. (16), the integrations with respect

to t and q can be completed using the method of stationary phase to produce
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I . <(pp2) 2 > = 27Cxfx,,12exp [-2( x 2 1

x dPýFexp{-i[P+S) x2/4A, - (630) )

0 -m

x exp [-4<C2>H(3,TP)]

where

P) = Y 2+Y2 + Y 2Cc CP + 9)+ 2. yCc C9-P)

3-yly 2 (CC (7 TP+/ 2 +C CS(' + T/ 2 + CC (T2 -T (61)

S+CC (-q02 - ?)I]

with

qw 0 42 (A -_ 1A) (62)

I
Further normalization of P and 9 does not simplify the computations. Again, for

I simplicity of notation the two-fold integration A is defined by

I A = "dPfdcexp{-i[('P+ )2/4Ai - ((63•))/4A2](
0 --

3 x exp [-4<(<>H(S,3')]

I Hence, the normalized two-position coherence function is

A C2X2 _C2XS< (Pl:z) 2>/ <lI> <I12> WA~M exp [-2i 2 f2 1 t2(4
- ~(-2Iaxr 2 - zxt 2 ) ] (64)

I Five regions can be identified for computing A as shown in Figure 7. Regions

II and V individually include two areas. The dimensions, L', Ll', L2 ', and L3 '

are clearly shown in the figure. They are defined byIl
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L2 - + (65)

and

L'- + L'. (66)

The choice of L' and Ll' must satisfy the inequalities L'- T/2> >1 and

LN,2/4Aj> >2n for both j - 1 and 2, respectively. For the contributions from

regions I and IV, the approximation used for region I in Figure 2 can be applied.

The results are

Air = exp [-02 Y2 + 9,1(2 )/ ( + i

- __ (67)

-2 fdy[il -exp (_02y 2C(y)) ])
0

and

AIv exp [_2(7, + ý722)] g, ( (2 7A,) 1/2 (l i

- (68)

-2fdy[1 -exp (-®2?c(c ) ( 1)
0

where

,= (nAj/2) 1/2{ (1/2 - C,(U/ýl/iTj)I -i (1/2 - S1 (4/lV/i/ j) ]} (69)

and

g= (nA 2/2)1/2{[1/2-ci(L/I/) I + i[12-S 1 (//ii•)1} (70)
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To obtain the contributions from regions II and V, the approximation used for

region II in Figure 2 can be utilized to produce the combined result

A11 v = AZ1 + Av

M 4A1A2  & d~exp [-iAjA(A2 -A,) T• (A, + A) 2 ]
A I + k • - . . ^
A1  fA M -A,) / 2AIA2

4 (71)
"xf d4exp (-iP3l) exp [-i (A -A,) F/(4AlA2) ]

×(exp(-•Y + 2 - 71 _y ( CC +/2) + CC (3 - T/2))]

- exp{-22(y +y¥)})

Again, the FFT algorithm can be used for the integration with respect to 5.

Finally, without any approximation the contribution from region III is

L/.-4 V,-L4-_. Ll *,4 L'- L;- 7A111  f d' f d-2-2 f C'P f C]

0 - (L'.- 4 -P) Z4 -(LW- -7) (72)

x exp{-i [(75+3)h2/4A, - (P-) "/4A2 ]} exp [-_ 2H/ (3,P) I

where H'(S,P) is the same as H(•,T) in Eq. (61) except that v, and Y2 are

replacea by 7 and T, respectively. The normalized two-position coherence

function can be obtained from the equality A - Ar + Aiv + Al! v + A,,, and Eq. (64).

The same parameter values as before are used for numerical evaluation of the

normalized two-position coherence function. L' and L' are chosen so that

Ll- -4;/2 = 5 and L, -- (807A) 2/2 Figure 8 shows the absolute values of the
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normalized two-position coherence function I<(plp2") 2>I/<I1><12>1 as a function of

the separation d for various situations which are the same as those in Figure 6.

Each curve drops from its maximum value, which is <12>/<I>2, to zero. All the

letters ind'.icate the same cases, respectively, as those in Figure 6. The shorter

coherence lengths in the cases of B and D when compared with the cases of A and C

confirm that the scattering at wind speed 15 m/s is stronger. Apparently, phase

fluctuations play an important role in determining the size of coherence length.

Curves A' and C' show that the coherence lengths in the case of the Gaussian

spectrum are about the same as those in the case of D/P spectrum when scattering

is weak and are smaller when scattering is stronger.

As discussed in section I, when scattering is weak, the ratio between the

absolute value of the two-position coherence function and the two-position

intensity correlation describes the fluctuation of the relative phase between the

two positions Lsee Eq. (5)1. Since the scintill.tion index is 0.52 in the case

when R - 1 km and the wind speed is 10 m/s in the D/P spectrum, Eq. (5) must be

approximately true. By using Eq. (5), the root-mean-square of the fluctuation of

relative phase, i.e. , <(Si - S2 ) 2>1/ 2 , is plotted for this case in Figure 9. The

fluctuation of the relative phase almost reaches 2.25 (radian) at d - 17.5 cm,

which is only 0.35 times a wavelength.

VI. CONCLUSIONS

Three types of fourth moments of forward-scattered acoustic waves from a

randomly-rough ocean surface have been evaluated. The first is the scintillation

index which characterizes the intensity fluctuations of the scattered wave. The

second is the two-position intensity correlation function. It indicates the

spatial correlation of the intensity. Tha third is the two-position coherence
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function which carries information on phase fluctuations of the scattered waves.

Particularly, when the scattering is not strong, the ratio of the absolute value

of the two-position coherencp function over the two-position intensity correlation

.unction exactly describes the mean-square fluctuation of the relative phase

between two observation positions.

The Fresnel-corrected Kirchhoff approximation was used to obtain integral

expressions for the fourth moments. Various approximation techniques were

developed for numerically evaluating the integrals. The approximations and

numerical methods are not applicable, however, for treating the very weak or

extremely strong scattering regimes. Two types of power spectra for the surface

height fluctuation were considered: a Gaussian spectrum and the Donelan/Pierson

spectrum which is an empirical model based on ocean wave measurements. The D/P

spectrum resulted in stronger scattering than the Gaussian spectrum for the same

values of A and 0 which was attributed to the greater mean-square surface slope

obtained with the D/P spectrum. The two-position coherence function was found to

decay much more rapidly with displacement between receivers than the i'ntensity

correlation function. For weak scattering, this led to large relative phase

fluctuations between two vertically displaced observation points.
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